James S. Baumstark Vice President Nuclear Engineering October 27, 1998 Consolidated Edison Company of New York, Inc. Indian Point 2 Station Broadway & Bleakley Avenue Buchanan, New York 10511 Indian Point Unit No. 2 Docket No. 50-247 LER 97-021-01 Internet: baumstarkj@coned.com Telephone: (914) 734-5354 Cellular: (914) 391-9005 Pager: (917) 457-9698 Fax: (914) 734-5718 Document Control Desk US Nuclear Regulatory Commission Mail Station PI-137 Washington, DC 20555 The attached Licensee Event Report 97-021-01 is hereby submitted in accordance with the requirements of 10 CFR 50.73. Very truly yours, Re: ### Attachment cc: Mr. Hubert J. Miller Regional Administrator - Region I US Nuclear Regulatory Commission 475 Allendale Road King of Prussia, PA 19406 > Mr. Jefferey Harold, Project Manager Project Directorate I-1 Division of Reactor Projects I/II US Nuclear Regulatory Commission Mail Stop 14B-2 Washington, DC 20555 Senior Resident Inspector US Nuclear Regulatory Commission PO Box 38 Buchanan, NY 10511 1/, 9811060046 981031 # CATEGORY 1 ## REGULATORY INFORMATION DISTRIBUTION SYSTEM (RIDS) | | N NBR:9811060046 | | | 98/10/31 NOTARIZED | | | DOCKET # | |-----------|------------------|-----------|--------|---------------------|--------|--------|----------| | | | | | it 2, Consolidated | Edison | Co. | 05000247 | | AUTH.N | | R AFFILI | | | | | | | MAYLATH | | | | Co. of New York, In | | | | | RECIP. | | Idated E | | Co. of New York, In | c. | | | | RECIP. | NAME RECIP | TENI AFF. | TUTALL | ON | | | | | SUBJECT | : LER 97-021-01: | on 97082 | 3,reac | tor trip occurred w | ith al | 1 CRs | С | | | fully insertin | g.Caused | by de | -energization of 6. | 9 kV b | reaker | | | | | | | testing was done on | | | A | | | relays, test re | lays & c | ircuit | s for RCPs.With 981 | 027 lt | r. | _ | | | | | | 1 1 | | 5 | T | | | UTION CODE: IE22 | | | | SIZE | | E | | TITLE: | 50.73/50.9 Licen | see Even | Repo | rt (LER), Incident | Rpt, e | tc. | ь | | NOTES: | | | | | | | G | | NOIES: | | | | | | | • | | | RECIPIENT | COPI | ES | RECIPIENT | COP | IES | 0 | | | ID CODE/NAME | LTTR | ENCL | ID CODE/NAME | LTTR | ENCL | | | | PD1-1 PD | 1 | 1 | HAROLD, J | 1 | 1 | R | | INTERNAL: | AEOD/SPD/RAB | 2 | 2 | AEOD/SPD/RRAB | 1 | 1 | Y | | | FILE CENTER | 1 | 1 | NRR/DE/ECGB | 1 | 1 | | | | NRR/DE/EELB | 1 | 1 | NRR/DE/EMEB | 1 | 1 | | | | NRR/DRCH/HICB | 1 | 1 | NRR/DRCH/HOHB | 1 | 1 | 1 | | | NRR/DRCH/HQMB | 1 | 1 | NRR/DRPM/PECB | 1 | 1 | | | | NRR/DSSA/SPLB | 1 | 1 | RES/DET/EIB | 1 | 1 | | | | RGN1 FILE 01 | 1 | 1 | | | | D | | PYTERNAT. | L ST LOBBY WARD | 1 | 1 | LITCO BRYCE, J H | 1 | 1 | _ | | EATERNAD. | NOAC POORE, W. | 1 | 1 | NOAC QUEENER, DS | 1 | 1 | 0 | | | NRC PDR | î | 1 | NUDOCS FULL TXT | 1 | 1 | | | | | _ | - | NODOGO TOLL INT | - | - | C | | | | | | | | | | | | | | | | | | U | | | | | | | | | | | | | | | | | | M | | | | | | | | | | NOTE TO ALL "RIDS" RECIPIENTS: PLEASE HELP US TO REDUCE WASTE. TO HAVE YOUR NAME OR ORGANIZATION REMOVED FROM DISTRIBUTION LISTS OR REDUCE THE NUMBER OF COPIES RECEIVED BY YOU OR YOUR ORGANIZATION, CONTACT THE DOCUMENT CONTROL DESK (DCD) ON EXTENSION 415-2083 N T | 1176 | | | | | | | | | | | | | | | | | | |--------------------|---|-----------|-------------|-------------------------------|--------------------|---------------------|---------|---------|--|--|---|--|--|--|--|--|--| | NRC FO
(6-1998) | PRM 36 | LICE | ENSEE EV | | PORT (| LER) | СОММІ | SSION | Estima
collecti
the lice
burder
Nuclea
Paperv
Budget | ted burder
on request
nsing proce
estimate
r Regulato
vork Redu
Washingt | y OMB NO. 315
per response to:
50 hrs. Reporte
ess and fed back to
to the Records
ry Commission, W
ction Project (31
on, DC 20503. If &
MB control numbe
of required to resp | comply with
d lessons le
o industry. F
Manageme
/ashington,
50-0104), C
an information, the NRC in | this mand
earned are
orward count Branch
DC 20555
Office of Non collection | latory information incorporated into mments regarding (T-6 F33), U.S0001, and to the Management and n does not display nduct or sponsor. | | | | | FACILITY | NAME | (1) | | | | | | | DOCK | ET NUMB | ER (2) | | F | AGE (3) | | | | | Indian | Point | No. 2 | | | | | | | 0 | 5000-2 | 47 | | 1 | OF 4 | | | | | Reacto | or Trip | Due to | De-energi | zation of 6. | 9 kV Brea | aker Log | ic Rela | ay | | | | | | | | | | | EVE | EVENT DATE (5) LER NUMBER (6) REPORT DATE (| | | | | | ATE (7) | | | | | | | | | | | | MONTH | DAY | YEAR | YEAR | SEQUENTIAL
NUMBER | REVISION
NUMBER | монтн | DAY | YEA | | FACILITY NAME | | 1 | with this mandatory informations learned are incorporated in ry. Forward comments regardigement Branch (T-6 F33), U. Iton, DC 20555-0001, and to the state of | | | | | | 08 | 23 | 1997 | 1997 | 021 | 01 | 10 | 31 | 199 | | CILITY NAM | ME . | ı | | | | | | | OPERA | | | | | SUBMITT | ED PURS | UANT T | O THE | REQUI | REMENT | S OF 10 CFR § | : (Check | one or mo | ore) (11) | | | | | MODE | (9) | | 20.22 | | | 20.2203 | | | | 50.73(| | | | | | | | | POW | | | | 03(a)(1) | | 20.2203 | | | - | 50.73(| | | _ | a)(2)(x) | | | | | LEVEL | (10) | | | 03(a)(2)(I) | | 20.2203 | | | V | | a)(2)(iii) | | 1 200 | D | | | | | | | | | 03(a)(2)(ii) | | 20.2203 | | | X | - | | - | _ | | | | | | | | | | 03(a)(2)(iii)
03(a)(2)(iv) | _ | 50.36(c) | | _ | - | 50.73(| a)(2)(vii) | - 5 | Specify in A | Abstract below or
m 366A | | | | | | | | 20.22 | 00(4)(2)(14) | LICEN | SEE CON | | OD THIS | LED | | -/(-/(***/ | | | | | | | | NAME
James | J. Ma | aylath, S | Senior Engi | neer | LICEN | SEE CON | ACLF | OR INS | | | NUMBER (Include Are | ea Code) | 356 | | | | | | | | | COMPLE | TE ONE LINE | EOD EAC | H COMPO | NENT | AII HD | DESC | DIRED | N THIS REPOR | T (13) | | | | | | | CAUSE | | SYSTEM | COMPONENT | | | EPORTABL
TO EPIX | | CAUS | | SYSTEM | COMPONENT | MANUFA | CTURER | REPORTABLE
TO EPIX | | | | | Х | \top | JC | RLY | W12 | 0 | Υ | | | | | | | | | | | | ABSTRACT (Limit to 1400 spaces, i.e., approximately 15 single-spaced typewritten lines) (16) SUPPLEMENTAL REPORT EXPECTED (14) (If yes, complete EXPECTED SUBMISSION DATE). On August 23, 1997, with the unit operating at 100% power, a reactor trip occurred with all control rods fully inserting. This initiated a turbine trip, and the generator tripped 30 seconds following the reactor trip as designed. The cause of the reactor trip was traced to the de-energization of a logic relay which monitors the 6.9 kV breaker for Reactor Coolant Pump 23. There was no condition that would have required the breaker to open during this event, and the breaker did not open. The resistance across a relay contact in the coil circuit of the logic relay was found to vary with no observable plunger motion. The cause of this resistance variation was corrosion on the surfaces of the relay contacts. Such variation can cause intermittent interruption of the circuit. This is the most probable cause of the de-energization of this logic relay which in turn caused the reactor trip. All safety-related equipment performed as designed, and the reactor was safely brought to hot shutdown conditions. NO MONTH DAY **EXPECTED** SUBMISSION **DATE (15)** YEAR NRC FORM 366A U.S. NUCLEAR REGULATORY COMMISSION #### LICENSEE EVENT REPORT (LER) TEXT CONTINUATION | | LX1 OOKTINOATION | | | | | |--------------------|------------------|------|-------------------|--------------------|--------| | FACILITY NAME (1) | DOCKET (2) | | PAGE (3) | | | | Indian Point No. 2 | 05000-247 | YEAR | SEQUENTIAL NUMBER | REVISION
NUMBER | 2 05 4 | | | | 1997 | 021 | 01 | 2 OF 4 | TEXT (If more space is required, use additional copies of NRC Form 366A) (17) #### PLANT AND SYSTEM IDENTIFICATION: Westinghouse 4-Loop Pressurized Water Reactor #### IDENTIFICATION OF OCCURRENCE: Reactor Trip Due to De-energization of 6.9 kV Breaker Logic Relay EVENT DATE: August 23, 1997 REPORT DUE DATE: September 22, 1997 REVISION DATE: October 31,1998 REFERENCES: Condition Identification and Tracking System (CITRS) No. 97-E03029 PAST SIMILAR OCCURRENCE: LER 86-037, 87-009, 92-011 and 96-015 #### DESCRIPTION OF OCCURRENCE: On August 23, 1997 at 1625 hours, with the unit operating at 100% power, the 6.9 kV breaker logic relay for Reactor Coolant Pump (RCP) 23 on Train B de-energized. This initiated a reactor trip. All control rods fully inserted into the core with the reactor trip. The turbine tripped following the reactor trip, and 30 seconds later, the generator tripped. RCP 23 continued to run during this event since its 6.9 kV supply breaker remained closed. There was no condition that would have required the breaker to open during this event. All safety-related equipment performed as designed, and the reactor was safely brought to hot shutdown conditions. #### NRC FORM 366A (6-1998) # LICENSEE EVENT REPORT (LER) **TEXT CONTINUATION** | FACILITY NAME (1) | DOCKET (2) | | LER NUMBER | (6) | PAGE (3) | |--------------------|------------|------|-------------------|--------------------|----------| | Indian Point No. 2 | 05000 047 | YEAR | SEQUENTIAL NUMBER | REVISION
NUMBER | 3 OF 4 | | | 05000-247 | 1997 | 021 | 01 | 3 01 4 | TEXT (If more space is required, use additional copies of NRC Form 366A) (17) #### ANALYSIS OF OCCURRENCE: This report is being made because an actuation of the Reactor Protection System (RPS) occurred on August 23, 1997. This actuation is reportable under 10 CFR 50.73(a)(2)(iv). Following the reactor trip, all safety-related equipment functioned as designed, and the reactor was safely brought to hot shutdown conditions. There were no injuries to personnel or damage to equipment as a result of this event. # CAUSE OF OCCURRENCE: It was determined that de-energization of the Train B logic relay for RCP 23 supply breaker initiated the reactor trip. This logic relay is designed to initiate a reactor trip if the 6.9 kV supply breaker to RCP 23 opens. This design provides for protection of the reactor from loss of reactor coolant flow and is common for each of the four RCPs. Throughout this event, there was no condition that would have required the breaker to open. All RCPs ran as required, and there was no unexpected loss of reactor coolant flow. Following the event, the logic and test relays for all RCP breakers and associated circuitry were tested. The resistance across a test relay contact in the coil circuit of the Train B logic relay for RCP 23 was found to vary with no observable plunger motion. While measuring the voltage drop across the test relay, the associated logic relay dropped out. This indicated that the resistance across the test relay contact increased enough to open the coil circuit of the logic relay, when the voltmeter probes touched the relay. Such resistance variation of the test relay contacts can cause intermittent interruption of the logic relay circuit. For this event the reactor trip signal cleared in about 1.314 seconds. This is indicative of an intermittent interruption of the logic relay circuit caused by a high resistance variation of the test relay contact. Two normally closed contacts of the test relays in series are in turn in series with logic relay coils for both reactor protection trains for all four RCPs. The test relays for both reactor protection trains for all four RCPs, except Train A on RCP 24, were sent to an independent laboratory for further analysis. The test relay for Train A on RCP 24 had been replaced last year following a similar event in 1996 described in LER 50-247/96-015. The laboratory analysis identified sporadically high resistance on each set of normally closed contacts of the test relays. This sporadic high resistance on the contact of the Train B test relay was of sufficient magnitude and duration to result in de-energization of the associated logic relay for RCP 23. This is the most probable cause for the de-energization of the logic relay for RCP 23 that resulted in the reactor trip. The cause of the sporadically high resistance was corrosion on the surface of the contacts. ## NRC FORM 366A (6-1998) # LICENSEE EVENT REPORT (LER) TEXT CONTINUATION | FACILITY NAME (1) | DOCKET (2) | | PAGE (3) | | | |--------------------|------------|------|-------------------|--------------------|--------| | | 05000.047 | YEAR | SEQUENTIAL NUMBER | REVISION
NUMBER | 4 OF 4 | | Indian Point No. 2 | 05000-247 | 1997 | 021 | 01 | 4 OF 4 | TEXT (If more space is required, use additional copies of NRC Form 366A) (17) #### CORRECTIVE ACTION: When the reactor trip occurred, the control room operators took immediate actions in accordance with emergency operating procedures. The reactor was safely brought to hot shutdown conditions. Subsequent investigation and testing was done on the logic relays, the test relays and associated circuits for all four RCPs. The only anomaly found was the resistance variation of the test relay contacts for RCP 23 on Train B. As a precaution, since there was a similar event in 1996, the test relays for both reactor protection trains for all four RCPs, except Train A on RCP 24, were replaced. The previously installed test relays for both reactor protection trains for all four RCPs were sent to PECO Nuclear laboratories for further analysis. This laboratory analysis identified differing levels of resistance variations on the test relay contacts. A benchmark of the industry was performed to determine if a generic relay issue existed. Fifteen plants, each with over 200 type BF relays, similar to the RCP test relays, were examined in the Nuclear Plant Reliability Data System (NPRDS) data base. Three type BF relay events were found: - A reactor trip at Indian Point No. 3, on December 22, 1987, initiated by the RCP low flow trip, similar to the two Indian Point No. 2 events, described in this LER and in LER 50-247/96-015. The Indian Point No. 3 event was caused by tarnish on the BF relay contacts that resulted in high resistance. - A reactor trip at Kewaunee, on April 2, 1996, initiated in the nuclear instrumentation circuits. This BF relay event was also due to tarnished contacts with high resistance. - The reactor trip at Indian Point No. 2, on August 19, 1996 described in LER 50-247/96-015. These three events and the August 23, 1997 event described herein are from a similar device, the BF relay, and are the result of corrosion on the contacts. The plants surveyed above have a minimum of 3,000 BF relays with only four failures identified in a ten year period. This is not indicative of a generic failure issue with the BF relay. Periodic visual inspections of the BF relays will be conducted as part of the preventive maintenance program. Resistance checks will be made on those relays that show evidence of heat degradation or corrosion buildup on the contacts. Relays found to have excessive degradation or unacceptably high resistance will be replaced. A second normally closed test relay contact was added in the logic relay coil circuit on both trains for all four RCPs to preclude an intermittent high resistance by a single relay contact from causing a reactor trip. Only the one test relay was replaced in 1996 because that failure was considered an isolated occurrence and a maintenance program for test and logic relays had already been instituted.